Search results
Results From The WOW.Com Content Network
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
In continuum mechanics, stress is a physical quantity that describes forces present during deformation.For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation.
Ductility: Ability of a material to deform under tensile load (% elongation). It is the property of a material by which it can be drawn into wires under the action of tensile force. A ductile material must have a high degree of plasticity and strength so that large deformations can take place without failure or rupture of the material.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch . This unit is often abbreviated as psi .
After the neck has formed in the material, further plastic deformation is concentrated in the neck while the remainder of the material undergoes elastic contraction owing to the decrease in tensile force. The stress–strain curve for a ductile material can be approximated using the Ramberg–Osgood equation. [2]
For example, a structure may have cables that are tightened, causing forces to develop in the structure, before any other loads are applied. Tempered glass is a commonly found example of a preloaded structure that has tensile forces and stresses that act on the plane of the glass and in the central plane of glass that causes compression forces ...
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.