Search results
Results From The WOW.Com Content Network
Both graphs show an identical exponential function of f(x) = 2 x. The graph on the left uses a linear scale, showing clearly an exponential trend. The graph on the right, however uses a logarithmic scale, which generates a straight line. If the graph viewer were not aware of this, the graph would appear to show a linear trend.
Manipulation of the graph's X-axis can also mislead; see the graph to the right. Both graphs are technically accurate depictions of the data they depict, and do use 0 as the base value of the Y-axis; but the rightmost graph only shows the "trough"; so it would be misleading to claim it depicts typical data over that time period.
Graphs that show a trend of data should illustrate the trend accurately in its context, rather than illustrating the trend in an exaggerated or sensationalized way. In short, don't draw misleading graphs. Choose a type of graph that is appropriate for the data you are illustrating. Cartesian coordinates
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G with edges E and vertices V, a perfect matching in G is a subset M of E, such that every vertex in V is adjacent to exactly one edge in M. The adjacency matrix of a perfect matching is a symmetric permutation matrix.
This is possible because this measurement does not require as much precision from the underlying equipment. Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a.
However, the graph is not 1-factorable. In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.