Search results
Results From The WOW.Com Content Network
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
2.1 Examples of Case II. 2.1 ... x 2 − a 2. Toggle Case III: Integrands containing x 2 − a 2 ... trigonometric functions. 5 Hyperbolic substitution. 6 See also. 7 ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
An expression like 1/2x is interpreted as 1/(2x) by TI-82, [3] as well as many modern Casio calculators [36] (configurable on some like the fx-9750GIII), but as (1/2)x by TI-83 and every other TI calculator released since 1996, [37] [3] as well as by all Hewlett-Packard calculators with algebraic notation.
The of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
The numbers (1, 2, 1) appearing as multipliers for the terms in this expansion are the binomial coefficients two rows down from the top of Pascal's triangle. The expansion of the n th power uses the numbers n rows down from the top of the triangle.