When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relative homology - Wikipedia

    en.wikipedia.org/wiki/Relative_homology

    In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.

  3. Compactly supported homology - Wikipedia

    en.wikipedia.org/wiki/Compactly_supported_homology

    In mathematics, a homology theory in algebraic topology is compactly supported if, in every degree n, the relative homology group H n (X, A) of every pair of spaces (X, A)is naturally isomorphic to the direct limit of the nth relative homology groups of pairs (Y, B), where Y varies over compact subspaces of X and B varies over compact subspaces of A.

  4. Lefschetz duality - Wikipedia

    en.wikipedia.org/wiki/Lefschetz_duality

    In mathematics, Lefschetz duality is a version of Poincaré duality in geometric topology, applying to a manifold with boundary.Such a formulation was introduced by Solomon Lefschetz (), at the same time introducing relative homology, for application to the Lefschetz fixed-point theorem. [1]

  5. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.

  6. Homological algebra - Wikipedia

    en.wikipedia.org/wiki/Homological_algebra

    where the homology groups of L, M, and N cyclically follow each other, and δ n are certain homomorphisms determined by f and g, called the connecting homomorphisms. Topological manifestations of this theorem include the Mayer–Vietoris sequence and the long exact sequence for relative homology.

  7. Category:Homology theory - Wikipedia

    en.wikipedia.org/wiki/Category:Homology_theory

    In mathematics, homology theory is the axiomatic study of the intuitive geometric idea of homology of cycles on topological spaces. It can be broadly defined as the study of homology theories on topological spaces.

  8. Lefschetz hyperplane theorem - Wikipedia

    en.wikipedia.org/wiki/Lefschetz_hyperplane_theorem

    Using a long exact sequence, one can show that each of these statements is equivalent to a vanishing theorem for certain relative topological invariants. In order, these are: In order, these are: The relative singular homology groups H k ( X , Y ; Z ) {\displaystyle H_{k}(X,Y;\mathbb {Z} )} are zero for k ≤ n − 1 {\displaystyle k\leq n-1} .

  9. Shapiro's lemma - Wikipedia

    en.wikipedia.org/wiki/Shapiro's_lemma

    In mathematics, especially in the areas of abstract algebra dealing with group cohomology or relative homological algebra, Shapiro's lemma, also known as the Eckmann–Shapiro lemma, relates extensions of modules over one ring to extensions over another, especially the group ring of a group and of a subgroup. It thus relates the group ...