When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    However, a set of four or more distinct points will, in general, not lie in a single plane. An example of coplanar points. Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.

  3. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero. If it does not, the lines ...

  4. Desargues configuration - Wikipedia

    en.wikipedia.org/wiki/Desargues_configuration

    Although it may be embedded in two dimensions, the Desargues configuration has a very simple construction in three dimensions: for any configuration of five planes in general position in Euclidean space, the ten points where three planes meet and the ten lines formed by the intersection of two of the planes together form an instance of the configuration. [2]

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    On the other hand, four distinct points can either be collinear, coplanar, or determine the entire space. Two distinct lines can either intersect, be parallel or be skew. Two parallel lines, or two intersecting lines, lie in a unique plane, so skew lines are lines that do not meet and do not lie in a common plane. Two distinct planes can either ...

  6. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Line art drawing of parallel lines and curves. In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three ...

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    As two points define a unique line, this ray consists of all the points between A and B (including A and B) and all the points C on the line through A and B such that B is between A and C. [12] This is, at times, also expressed as the set of all points C on the line determined by A and B such that A is not between B and C. [13]

  9. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    A necessary condition for two lines to intersect is that they are in the same plane—that is, are not skew lines. Satisfaction of this condition is equivalent to the tetrahedron with vertices at two of the points on one line and two of the points on the other line being degenerate in the sense of having zero volume.