When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the RobertsonSeymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.

  3. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The RobertsonSeymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying Kőnig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Robbins theorem (graph theory) RobertsonSeymour theorem (graph theory) Robin's theorem (number theory) Robinson's joint consistency theorem (mathematical logic) Rokhlin's theorem (geometric topology) Rolle's theorem ; Rosser's theorem (number theory) Rouché's theorem (complex analysis) Rouché–Capelli theorem (Linear algebra)

  5. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the RobertsonSeymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...

  6. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  7. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    exponential diophantine equations: ⇐Pillai's conjecture⇐abc conjecture Mihăilescu's theorem 2002: Maria Chudnovsky, Neil Robertson, Paul D. Seymour, and Robin Thomas: strong perfect graph conjecture: perfect graphs: Chudnovsky–RobertsonSeymour–Thomas theorem 2002: Grigori Perelman: Poincaré conjecture, 1904: 3-manifolds: 2003 ...

  8. Linkless embedding - Wikipedia

    en.wikipedia.org/wiki/Linkless_embedding

    Therefore, by the RobertsonSeymour theorem, the linklessly embeddable graphs have a forbidden graph characterization as the graphs that do not contain any of a finite set of minors. [ 3 ] The set of forbidden minors for the linklessly embeddable graphs was identified by Sachs (1983) : the seven graphs of the Petersen family are all minor ...

  9. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    This case of the theorem is still provable by Π 1 1-CA 0, but by adding a "gap condition" [3] to the definition of the order on trees above, he found a natural variation of the theorem unprovable in this system. [4] [5] Much later, the RobertsonSeymour theorem would give another theorem unprovable by Π 1 1-CA 0.