Search results
Results From The WOW.Com Content Network
In topology and in calculus, a round function is a scalar function, over a manifold, whose critical points form one or several connected components, each homeomorphic to the circle, also called critical loops. They are special cases of Morse-Bott functions.
The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.
For example, encryption using an oversimplified three-round cipher can be written as = ((())), where C is the ciphertext and P is the plaintext. Typically, rounds R 1 , R 2 , . . . {\displaystyle R_{1},R_{2},...} are implemented using the same function, parameterized by the round constant and, for block ciphers , the round key from the key ...
where f is the function for multiplying, P is the coordinate to multiply, d is the number of times to add the coordinate to itself. Example: 100P can be written as 2(2[P + 2(2[2(P + 2P)])]) and thus requires six point double operations and two point addition operations. 100P would be equal to f(P, 100).
The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits). The two most commonly used levels of precision for floating-point numbers are single precision and double precision.
For example, rounding x = 2.1784 dollars to whole cents (i.e., to a multiple of 0.01) entails computing 2.1784 / 0.01 = 217.84, then rounding that to 218, and finally computing 218 × 0.01 = 2.18. When rounding to a predetermined number of significant digits , the increment m depends on the magnitude of the number to be rounded (or of the ...
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
For example, the arithmetic mean of 0° and 360° is 180°, which is misleading because 360° equals 0° modulo a full cycle. [1] As another example, the "average time" between 11 PM and 1 AM is either midnight or noon, depending on whether the two times are part of a single night or part of a single calendar day.