Search results
Results From The WOW.Com Content Network
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
An example is the BFGS method which consists in calculating on every step a matrix by which the gradient vector is multiplied to go into a "better" direction, combined with a more sophisticated line search algorithm, to find the "best" value of .
OpenMDAO is an open-source high-performance computing platform for systems analysis and multidisciplinary optimization written in the Python programming language.. The OpenMDAO project is primarily focused on supporting gradient based optimization with analytic derivatives to allow you to explore large design spaces with hundreds or thousands of design variables, but the framework also has a ...
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the ...
Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...
Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form + (),where is convex and differentiable with Lipschitz continuous gradient, is a convex, lower semicontinuous function which is possibly nondifferentiable, and is some set, typically a Hilbert space.
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...
The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. [1] It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation ...