Search results
Results From The WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...
For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the full range 0..510 of possible sums, the differences using only the first 256 entries in range 0..255) or 2 9 −1=511 entries (using for negative differences the technique of 2-complements and 9-bit masking, which avoids testing the sign of ...
Pascal has two forms of the while loop, while and repeat. While repeats one statement (unless enclosed in a begin-end block) as long as the condition is true. The repeat statement repetitively executes a block of one or more statements through an until statement and continues repeating unless the condition is false. The main difference between ...
While the above algorithm is correct, it is slower than multiplication in the standard representation because of the need to multiply by R′ and divide by N. Montgomery reduction , also known as REDC, is an algorithm that simultaneously computes the product by R ′ and reduces modulo N more quickly than the naïve method.
The oldest known multiplication tables were used by the Babylonians about 4000 years ago. [2] However, they used a base of 60. [2] The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period. [2] "Table of Pythagoras" on Napier's bones [3]
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: