Search results
Results From The WOW.Com Content Network
The duality between covariance and contravariance intervenes whenever a vector or tensor quantity is represented by its components, although modern differential geometry uses more sophisticated index-free methods to represent tensors. In tensor analysis, a covariant vector varies more or less reciprocally to a corresponding contravariant vector ...
Among mainstream OO languages, Java, C++ and C# (as of version 9.0 [7]) support covariant return types. Adding the covariant return type was one of the first modifications of the C++ language approved by the standards committee in 1998. [8] Scala and D also support covariant return types.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The observations on the dependent variable are stacked into a column vector y; the observations on each independent variable are also stacked into column vectors, and these latter column vectors are combined into a design matrix X (not denoting a random vector in this context) of observations on the independent variables. Then the following ...
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
The covariance is sometimes called a measure of "linear dependence" between the two random variables. That does not mean the same thing as in the context of linear algebra (see linear dependence ). When the covariance is normalized, one obtains the Pearson correlation coefficient , which gives the goodness of the fit for the best possible ...
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different ...