Search results
Results From The WOW.Com Content Network
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
1 N 1.4 N The weight of a smartphone [13] [14] 2.5 N Typical thrust of a Dual-Stage 4-Grid ion thruster. 9.8 N One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15] 10 N 50 N Average force to break the shell of a chicken egg from a young hen [16] 10 2 N 720 N Average force of human bite, measured at molars [17 ...
newton dyne kilogram-force, kilopond pound-force poundal; 1 N : ≡ 1 kg⋅m/s 2 = 10 5 dyn ≈ 0.101 97 kp: ≈ 0.224 81 lb F: ≈ 7.2330 pdl: 1 dyn = 10 −5 N ≡ 1 g⋅cm/s 2
The tonne-force, metric ton-force, megagram-force, and megapond (Mp) are each 1000 kilograms-force. The decanewton or dekanewton (daN), exactly 10 N, is used in some fields as an approximation to the kilogram-force, because it is close to the 9.80665 N of 1 kgf. The gram-force is 1 ⁄ 1000 of a kilogram-force.
The calorie is defined as the amount of thermal energy necessary to raise the temperature of one gram of water by 1 Celsius degree, from a temperature of 14.5 °C, at a pressure of 1 atm. For thermochemistry a calorie of 4.184 J is used, but other calories have also been defined, such as the International Steam Table calorie of 4.1868 J .
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [1] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.