When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...

  3. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Descartes' rule of signs asserts that the difference between the number of sign variations in the sequence of the coefficients of a polynomial and the number of its positive real roots is a nonnegative even integer. It results that if this number of sign variations is zero, then the polynomial does not have any positive real roots, and, if this ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    However, in the case of polynomials there are other methods such as Descartes' rule of signs, Budan's theorem and Sturm's theorem for bounding or determining the number of roots in an interval. They lead to efficient algorithms for real-root isolation of polynomials, which find all real roots with a guaranteed accuracy.

  5. Budan's theorem - Wikipedia

    en.wikipedia.org/wiki/Budan's_theorem

    All results described in this article are based on Descartes' rule of signs. If p(x) is a univariate polynomial with real coefficients, let us denote by # + (p) the number of its positive real roots, counted with their multiplicity, [1] and by v(p) the number of sign variations in the sequence of its coefficients. Descartes's rule of signs ...

  6. La Géométrie - Wikipedia

    en.wikipedia.org/wiki/La_Géométrie

    The work was the first to propose the idea of uniting algebra and geometry into a single subject [2] and invented an algebraic geometry called analytic geometry, which involves reducing geometry to a form of arithmetic and algebra and translating geometric shapes into algebraic equations. For its time this was ground-breaking.

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    (The fundamental theorem of algebra is the special case n = 1.) This exponential behavior makes solving polynomial systems difficult and explains why there are few solvers that are able to automatically solve systems with Bézout's bound higher than, say, 25 (three equations of degree 3 or five equations of degree 2 are beyond this bound).

  8. René Descartes - Wikipedia

    en.wikipedia.org/wiki/René_Descartes

    Descartes's work provided the basis for the calculus developed by Leibniz and Newton, who applied the infinitesimal calculus to the tangent line problem, thus permitting the evolution of that branch of modern mathematics. [141] His rule of signs is also a commonly used method to determine the number of positive and negative roots of a polynomial.

  9. Mathematics education in the United States - Wikipedia

    en.wikipedia.org/wiki/Mathematics_education_in...

    Students are introduced to the use of a graphing calculator to help them visualize the plots of equations and to supplement the traditional techniques for finding the roots of a polynomial, such as the rational root theorem and the Descartes rule of signs. Precalculus ends with an introduction to limits of a function.