When.com Web Search

  1. Ads

    related to: pyramid examples and formulas for geometry problems and solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [24] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.

  3. Egyptian geometry - Wikipedia

    en.wikipedia.org/wiki/Egyptian_geometry

    We only have a limited number of problems from ancient Egypt that concern geometry. Geometric problems appear in both the Moscow Mathematical Papyrus (MMP) and in the Rhind Mathematical Papyrus (RMP). The examples demonstrate that the ancient Egyptians knew how to compute areas of several geometric shapes and the volumes of cylinders and pyramids.

  4. Heronian tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Heronian_tetrahedron

    A Heronian tetrahedron [1] (also called a Heron tetrahedron [2] or perfect pyramid [3]) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles (named for Hero of Alexandria ).

  5. Rhind Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

    Problem 56 is the first of the "pyramid problems" or seked problems in the Rhind papyrus, 56–59, 59B and 60, which concern the notion of a pyramid's facial inclination with respect to a flat ground. In this connection, the concept of a seked suggests early beginnings of trigonometry.

  6. Moscow Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Moscow_Mathematical_Papyrus

    The problems in the Moscow Papyrus follow no particular order, and the solutions of the problems provide much less detail than those in the Rhind Mathematical Papyrus. The papyrus is well known for some of its geometry problems. Problems 10 and 14 compute a surface area and the volume of a frustum respectively. The remaining problems are more ...

  7. Seked - Wikipedia

    en.wikipedia.org/wiki/Seked

    Casing stone from the Great Pyramid. The seked of a pyramid is described by Richard Gillings in his book 'Mathematics in the Time of the Pharaohs' as follows: . The seked of a right pyramid is the inclination of any one of the four triangular faces to the horizontal plane of its base, and is measured as so many horizontal units per one vertical unit rise.

  8. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all ...

  9. Elongated pentagonal pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_pentagonal_pyramid

    As the name suggests, it can be constructed by elongating a pentagonal pyramid (J 2) by attaching a pentagonal prism to its base. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ).