When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    In plants, ATP synthase is also present in chloroplasts (CF 1 F O-ATP synthase). The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic ...

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b 6 f uses electrons from PSII and energy from PSI [citation needed] to pump protons from the stroma to the lumen. The resulting proton gradient across the thylakoid membrane creates a proton ...

  4. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    Both the structure of ATP synthase and its underlying gene are remarkably similar in all known forms of life. ATP synthase is powered by a transmembrane electrochemical potential gradient, usually in the form of a proton gradient. In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential ...

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    ATP synthase produces 1 ATP / 3 H +. However the exchange of matrix ATP for cytosolic ADP and Pi (antiport with OH − or symport with H +) mediated by ATP–ADP translocase and phosphate carrier consumes 1 H + / 1 ATP as a result of regeneration of the transmembrane potential changed during this transfer, so the net ratio is 1 ATP : 4 H +.

  6. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).

  7. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the ...

  8. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The thylakoid ATP synthase is a CF1FO-ATP synthase similar to the mitochondrial ATPase. It is integrated into the thylakoid membrane with the CF1-part sticking into the stroma. Thus, ATP synthesis occurs on the stromal side of the thylakoids where the ATP is needed for the light-independent reactions of photosynthesis.

  9. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    In plants, ATP is synthesized in the thylakoid membrane of the chloroplast. The process is called photophosphorylation. The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. [28]