When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis.

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.

  4. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.

  5. High-energy phosphate - Wikipedia

    en.wikipedia.org/wiki/High-energy_phosphate

    Often, high-energy phosphate bonds are denoted by the character '~'. In this "squiggle" notation, ATP becomes A-P~P~P. The squiggle notation was invented by Fritz Albert Lipmann, who first proposed ATP as the main energy transfer molecule of the cell, in 1941. [4] Lipmann's notation emphasizes the special nature of these bonds. [5] Stryer states:

  6. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.

  7. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP.One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration.

  8. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (P i). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is: ADP + P i + 2H + out ⇌ ATP + H 2 O + 2H + in

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    This store of energy is tapped when protons flow back across the membrane and down the potential energy gradient, through a large enzyme called ATP synthase in a process called chemiosmosis. The ATP synthase uses the energy to transform adenosine diphosphate (ADP) into adenosine triphosphate, in a phosphorylation reaction.