Search results
Results From The WOW.Com Content Network
There are two main concepts to be taken from Faraday's Law that apply to the design of inductive discharge ignitions. One is that moving a wire through a magnetic field will induce an electric voltage and current in the wire, aka electromagnetic induction. The second is that current moving in a wire will induce a magnetic field around the wire.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
Media related to Faraday's law of induction at Wikimedia Commons; A simple interactive tutorial on electromagnetic induction (click and drag magnet back and forth) National High Magnetic Field Laboratory; Roberto Vega. Induction: Faraday's law and Lenz's law – Highly animated lecture, with sound effects, Electricity and Magnetism course page
ECT began largely as a result of the English scientist Michael Faraday's discovery of electromagnetic induction in 1831. Faraday discovered that when there is a closed path through which current can circulate and a time-varying magnetic field passes through a conductor (or vice versa), an electric current flows through this conductor.
The history of electromagnetic induction, a facet of electromagnetism, began with observations of the ancients: electric charge or static electricity (rubbing silk on amber), electric current , and magnetic attraction . Understanding the unity of these forces of nature, and the scientific theory of electromagnetism was initiated and achieved ...
As a consequence of Faraday's law of induction, any loop of wire that generates a changing magnetic field in time, also generates an electric field. This process takes energy out of the wire through the electromotive force (EMF). EMF is defined as electromagnetic work done on a unit charge when it has traveled one round of a conductive loop.
electromagnetic induction The production of current in a circuit by the change of magnetic field intersecting the circuit. electromagnetic radiation Radio waves, light and other radiation that travels through space at the speed of light. electromagnetic spectrum The range of frequencies of electromagnetic radiation. electromagnetic wave equation