When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    the higher the tension, the higher the frequency of the fundamental; the lighter the string, the higher the frequency of the fundamental; Moreover, if we take the nth harmonic as having a wavelength given by = /, then we easily get an expression for the frequency of the nth harmonic:

  3. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  4. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).

  5. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.

  7. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.

  8. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  9. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    In 1922, Alexander Friedmann derived his Friedmann equations from Einstein field equations, showing that the universe might expand at a rate calculable by the equations. [24] The parameter used by Friedmann is known today as the scale factor and can be considered as a scale invariant form of the proportionality constant of Hubble's law.