Search results
Results From The WOW.Com Content Network
The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...
Determinants can also be defined by some of their properties. Namely, the determinant is the unique function defined on the n × n matrices that has the four following properties: The determinant of the identity matrix is 1. The exchange of two rows multiplies the determinant by −1.
Invertibility of integer matrices is in general more numerically stable than that of non-integer matrices. The determinant of an integer matrix is itself an integer, and the adj of an integer Matrix is also integer Matrix, thus the numerically smallest possible magnitude of the determinant of an invertible integer matrix is one, hence where inverses exist they do not become excessively large ...
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:
However, the Levi-Civita symbol is a pseudotensor because under an orthogonal transformation of Jacobian determinant −1, for example, a reflection in an odd number of dimensions, it should acquire a minus sign if it were a tensor. As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor.
Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.
In this case, the determinant may not be 1, but will have absolute value 1. In the 2×2 case ( n =1), M will be the product of a real symplectic matrix and a complex number of absolute value 1. Other authors [ 9 ] retain the definition ( 1 ) for complex matrices and call matrices satisfying ( 3 ) conjugate symplectic .
The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example: