When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]

  3. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  5. Category:Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Category:Logistic_regression

    Download QR code; Print/export ... Pages in category "Logistic regression" ... Multinomial logistic regression; O. Ordered logit; S.

  6. Choice modelling - Wikipedia

    en.wikipedia.org/wiki/Choice_modelling

    Due to his use of the normal distribution Thurstone was unable to generalise this binary choice into a multinomial choice framework (which required the multinomial logistic regression rather than probit link function), hence why the method languished for over 30 years. However, in the 1960s through 1980s the method was axiomatised and applied ...

  7. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  8. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  9. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    Commonly used models in the GLM family include binary logistic regression [5] for binary or dichotomous outcomes, Poisson regression [6] for count outcomes, and linear regression for continuous, normally distributed outcomes. This means that GLM may be spoken of as a general family of statistical models or as specific models for specific ...