Search results
Results From The WOW.Com Content Network
In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions.
Some Archimedean solids appeared in Piero della Francesca's De quinque corporibus regularibus, in attempting to study and copy the works of Archimedes, as well as include citations to Archimedes. [12] Yet, he did not credit those shapes to Archimedes and know of Archimedes' work but rather appeared to be an independent rediscovery. [13]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident Curve: Trisectrix of Maclaurin: Tschirnhausen Cubic ...
Conchoid of Nicomedes drawn by an apparatus illustrated in Eutocius' Commentaries on the works of Archimedes. In geometry, a conchoid is a curve derived from a fixed point O, another curve, and a length d. It was invented by the ancient Greek mathematician Nicomedes. [1]
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.