When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

  3. Point-blank range - Wikipedia

    en.wikipedia.org/wiki/Point-blank_range

    Maximum point-blank range is principally a function of a cartridge's external ballistics and target size: high-velocity rounds have long point-blank ranges, while slow rounds have much shorter point-blank ranges. Target size determines how far above and below the line of sight a projectile's trajectory may deviate.

  4. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The set S obviously contains a, and is bounded by b by construction. By the least-upper-bound property, S has a least upper bound c ∈ [ a , b ] . Hence, c is itself an element of some open set U α , and it follows for c < b that [ a , c + δ ] can be covered by finitely many U α for some sufficiently small δ > 0 .

  5. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  6. Local boundedness - Wikipedia

    en.wikipedia.org/wiki/Local_boundedness

    Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:

  7. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    Each set has a supremum (infimum), if it is bounded from above (below). Proof: Without loss of generality one can look at a set A ⊂ R {\displaystyle A\subset \mathbb {R} } that has an upper bound. One can now construct a sequence ( I n ) n ∈ N {\displaystyle (I_{n})_{n\in \mathbb {N} }} of nested intervals I n = [ a n , b n ] {\displaystyle ...

  8. Local martingale - Wikipedia

    en.wikipedia.org/wiki/Local_martingale

    In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local ...

  9. Unbounded operator - Wikipedia

    en.wikipedia.org/wiki/Unbounded_operator

    A densely defined symmetric [clarification needed] operator T on a Hilbert space H is called bounded from below if T + a is a positive operator for some real number a. That is, Tx|x ≥ −a ||x|| 2 for all x in the domain of T (or alternatively Tx|x ≥ a ||x|| 2 since a is arbitrary). [8] If both T and −T are bounded from below then T is ...