Search results
Results From The WOW.Com Content Network
A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.
Maximum point-blank range is principally a function of a cartridge's external ballistics and target size: high-velocity rounds have long point-blank ranges, while slow rounds have much shorter point-blank ranges. Target size determines how far above and below the line of sight a projectile's trajectory may deviate.
The set S obviously contains a, and is bounded by b by construction. By the least-upper-bound property, S has a least upper bound c ∈ [ a , b ] . Hence, c is itself an element of some open set U α , and it follows for c < b that [ a , c + δ ] can be covered by finitely many U α for some sufficiently small δ > 0 .
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:
Each set has a supremum (infimum), if it is bounded from above (below). Proof: Without loss of generality one can look at a set A ⊂ R {\displaystyle A\subset \mathbb {R} } that has an upper bound. One can now construct a sequence ( I n ) n ∈ N {\displaystyle (I_{n})_{n\in \mathbb {N} }} of nested intervals I n = [ a n , b n ] {\displaystyle ...
In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local ...
A densely defined symmetric [clarification needed] operator T on a Hilbert space H is called bounded from below if T + a is a positive operator for some real number a. That is, Tx|x ≥ −a ||x|| 2 for all x in the domain of T (or alternatively Tx|x ≥ a ||x|| 2 since a is arbitrary). [8] If both T and −T are bounded from below then T is ...