When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    NMR is extensively used in medicine in the form of magnetic resonance imaging. NMR is widely used in organic chemistry and industrially mainly for analysis of chemicals. The technique is also used to measure the ratio between water and fat in foods, monitor the flow of corrosive fluids in pipes, or to study molecular structures such as ...

  4. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    The peak at the center is the ZPD position ("zero path difference"): Here, all the light passes through the interferometer because its two arms have equal length. The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry.

  5. Fourier-transform infrared spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_infrared...

    Fourier transform (FT) inverts the dimension, so the FT of the interferogram belongs in the reciprocal length dimension([L −1]), that is the dimension of wavenumber. The spectral resolution in cm −1 is equal to the reciprocal of the maximal retardation in cm.

  6. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  7. Free induction decay - Wikipedia

    en.wikipedia.org/wiki/Free_induction_decay

    Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).

  8. Benchtop nuclear magnetic resonance spectrometer - Wikipedia

    en.wikipedia.org/wiki/Benchtop_nuclear_magnetic...

    The first generation of NMR spectrometers used large Electromagnets weighing hundreds of kilograms or more. Slightly smaller permanent magnet systems were developed in the 1960s-70s at proton resonance frequencies of 60 and 90 MHz and were widely used for chemical analysis using continuous wave methods, but these permanent magnets still weighed hundreds of kilograms and could not be placed on ...

  9. Fourier-transform ion cyclotron resonance - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_ion...

    FT-ICR was invented by Melvin B. Comisarow [2] and Alan G. Marshall at the University of British Columbia. The first paper appeared in Chemical Physics Letters in 1974. [3] The inspiration was earlier developments in conventional ICR and Fourier-transform nuclear magnetic resonance (FT-NMR) spectrometry.