When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  3. Polignac's conjecture - Wikipedia

    en.wikipedia.org/wiki/Polignac's_conjecture

    For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n. [2] Although the conjecture has not yet been proven or disproven for any given value of n, in 2013 an important breakthrough was made by Yitang Zhang who proved that ...

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without ...

  6. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Henryk Iwaniec showed that there are infinitely many numbers of the form + with at most two prime factors. [ 26 ] [ 27 ] Ankeny [ 28 ] and Kubilius [ 29 ] proved that, assuming the extended Riemann hypothesis for L -functions on Hecke characters , there are infinitely many primes of the form p = x 2 + y 2 {\displaystyle p=x^{2}+y^{2}} with y ...

  7. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    The intersection of two (and hence finitely many) open sets is open: let U 1 and U 2 be open sets and let x ∈ U 1 ∩ U 2 (with numbers a 1 and a 2 establishing membership). Set a to be the least common multiple of a 1 and a 2. Then S(a, x) ⊆ S(a i, x) ⊆ U i. This topology has two notable properties:

  8. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...

  9. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    This property implies that no Euclid number can be a square. For all n ≥ 3 the last digit of E n is 1, since E n − 1 is divisible by 2 and 5. In other words, since all primorial numbers greater than E 2 have 2 and 5 as prime factors, they are divisible by 10, thus all E n ≥ 3 + 1 have a final digit of 1.