Search results
Results From The WOW.Com Content Network
Each possible contiguous sub-array is represented by a point on a colored line. That point's y-coordinate represents the sum of the sample. Its x-coordinate represents the end of the sample, and the leftmost point on that colored line represents the start of the sample. In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10].
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
Majority problem (cellular automaton), the problem of finding a majority element in the cellular automaton computational model Misra–Gries heavy hitters algorithm and Misra–Gries summary , a natural generalization of the Boyer–Moore majority vote algorithm that stores more than one item and more than one count
In mathematical optimization, Himmelblau's function is a multi-modal function, used to test the performance of optimization algorithms.The function is defined by: (,) = (+) + (+).
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
In this variant of the problem, which allows for interesting applications in several contexts, it is possible to devise an optimal selection procedure that, given a random sample of size as input, will generate an increasing sequence with maximal expected length of size approximately . [11] The length of the increasing subsequence selected by ...