Search results
Results From The WOW.Com Content Network
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2] Both animals and plants temporarily store the released energy in the form of high-energy molecules, such as adenosine triphosphate (ATP), for use in various cellular processes.
A core set of energy-producing catabolic pathways occur within all living organisms in some form. These pathways transfer the energy released by breakdown of nutrients into ATP and other small molecules used for energy (e.g. GTP, NADPH, FADH 2). All cells can perform anaerobic respiration by glycolysis.
In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. In prokaryotic cells, such as bacteria, which lack mitochondria, the citric acid cycle reaction sequence is performed in the cytosol with the proton gradient for ATP production being across the cell's surface ( plasma membrane ) rather than the inner membrane ...
The post-glycolytic reactions take place in the mitochondria in eukaryotic cells, and in the cytoplasm in prokaryotic cells. [6] Although plants are net consumers of carbon dioxide and producers of oxygen via photosynthesis, plant respiration accounts for about half of the CO 2 generated annually by terrestrial ecosystems. [7] [8]: 87
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
Prokaryotes have fewer organelles than eukaryotes. Both have plasma membranes and ribosomes (structures that synthesize proteins [clarification needed] and float free in cytoplasm). Two unique characteristics of prokaryotes are fimbriae (finger-like projections on the surface of a cell) and flagella (threadlike structures that aid movement). [2]
The DNA of a prokaryotic cell consists of a single circular chromosome that is in direct contact with the cytoplasm. The nuclear region in the cytoplasm is called the nucleoid. Most prokaryotes are the smallest of all organisms, ranging from 0.5 to 2.0 μm in diameter. [1] [page needed] A prokaryotic cell has three regions: