Search results
Results From The WOW.Com Content Network
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".
This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]
It is used to prove Kronecker's lemma, which in turn, is used to prove a version of the strong law of large numbers under variance constraints. It may be used to prove Nicomachus's theorem that the sum of the first n {\displaystyle n} cubes equals the square of the sum of the first n {\displaystyle n} positive integers.
This is a formulation of the Lax–Milgram theorem which relies on properties of the symmetric part of the bilinear form. It is not the most general form. It is not the most general form. Let V {\displaystyle V} be a real Hilbert space and a ( ⋅ , ⋅ ) {\displaystyle a(\cdot ,\cdot )} a bilinear form on V {\displaystyle V} , which is
Zorn's lemma is named for Max Zorn. Much work on the theorem now known as Zorn's lemma, and on several closely related formulations such as the Hausdorff maximal principle, was done between 1907 and 1940 by Zorn, Brouwer, Hausdorff, Kuratowski, R. L. Moore, and others. But the particular theorem now known as "Zorn's lemma" was never proved by ...
The compactness theorem first appeared as a lemma in Gödel's proof of the completeness theorem, and it took many years before logicians grasped its significance and began to apply it routinely. It says that a set of sentences has a model if and only if every finite subset has a model, or in other words that an inconsistent set of formulas must ...