When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear dynamical system - Wikipedia

    en.wikipedia.org/wiki/Linear_dynamical_system

    Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...

  3. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    Model order reduction aims to lower the computational complexity of such problems, for example, in simulations of large-scale dynamical systems and control systems. By a reduction of the model's associated state space dimension or degrees of freedom , an approximation to the original model is computed which is commonly referred to as a reduced ...

  4. List of dynamical systems and differential equations topics

    en.wikipedia.org/wiki/List_of_dynamical_systems...

    Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...

  5. Dynamical systems theory - Wikipedia

    en.wikipedia.org/wiki/Dynamical_systems_theory

    Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...

  6. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  7. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Classical control theory uses the Laplace transform to model the systems and signals. The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable.

  8. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    A real dynamical system, real-time dynamical system, continuous time dynamical system, or flow is a tuple (T, M, Φ) with T an open interval in the real numbers R, M a manifold locally diffeomorphic to a Banach space, and Φ a continuous function. If Φ is continuously differentiable we say the system is a differentiable dynamical system.

  9. Phase space method - Wikipedia

    en.wikipedia.org/wiki/Phase_space_method

    In applied mathematics, the phase space method is a technique for constructing and analyzing solutions of dynamical systems, that is, solving time-dependent differential equations. The method consists of first rewriting the equations as a system of differential equations that are first-order in time, by introducing additional variables.