Search results
Results From The WOW.Com Content Network
Light cone coordinates can also be generalized to curved spacetime in general relativity. Sometimes calculations simplify using light cone coordinates. See Newman–Penrose formalism. Light cone coordinates are sometimes used to describe relativistic collisions, especially if the relative velocity is very close to the speed of light.
The projection is known by several names: the (ellipsoidal) transverse Mercator in the US; Gauss conformal or Gauss–Krüger in Europe; or Gauss–Krüger transverse Mercator more generally. Other than just a synonym for the ellipsoidal transverse Mercator map projection, the term Gauss–Krüger may be used in other slightly different ways:
The formulas for the spherical orthographic projection are derived using trigonometry.They are written in terms of longitude (λ) and latitude (φ) on the sphere.Define the radius of the sphere R and the center point (and origin) of the projection (λ 0, φ 0).
Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below.
Where the light source emanates along the line described in this last constraint is what yields the differences between the various "natural" cylindrical projections. But the term cylindrical as used in the field of map projections relaxes the last constraint entirely. Instead the parallels can be placed according to any algorithm the designer ...
Especially when used in special relativity (SR), the temporal axes of a spacetime diagram are often scaled with the speed of light c, and thus are often labeled by ct. This changes the dimension of the addressed physical quantity from <Time> to <Length>, in accordance with the dimension associated with the spatial axis, which is frequently ...
Polarized light with its electric field along the plane of incidence is thus denoted p-polarized, while light whose electric field is normal to the plane of incidence is called s-polarized. P-polarization is commonly referred to as transverse-magnetic (TM), and has also been termed pi-polarized or π-polarized, or tangential plane polarized.
A light field parameterized this way is sometimes called a light slab. Some alternative parameterizations of the 4D light field, which represents the flow of light through an empty region of three-dimensional space. Left: points on a plane or curved surface and directions leaving each point. Center: pairs of points on the surface of a sphere.