Search results
Results From The WOW.Com Content Network
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1. The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
The Boltzmann equation can be used to determine how physical quantities change, such as heat energy and momentum, when a fluid is in transport. One may also derive other properties characteristic to fluids such as viscosity , thermal conductivity , and electrical conductivity (by treating the charge carriers in a material as a gas). [ 2 ]
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
In physics and chemistry, an equation of state is a thermodynamic equation relating state ... ideal gas constant ≈ 8.3144621 ... is the Boltzmann constant and ...
Boltzmann's equation = is the realization that the entropy is proportional to with the constant of proportionality being the Boltzmann constant. Using the ideal gas equation of state ( PV = NkT ), It follows immediately that β = 1 / k T {\displaystyle \beta =1/kT} and α = − μ / k T {\displaystyle \alpha =-\mu /kT} so that the ...
This link is provided by Boltzmann's fundamental assumption written as S = k B ln Ω , {\displaystyle S=k_{\rm {B}}\ln \Omega ,} where k B is the Boltzmann constant , S is the classical thermodynamic entropy, and Ω is the number of microstates.
where N v is the vacancy concentration, Q v is the energy required for vacancy formation, k B is the Boltzmann constant, T is the absolute temperature, and N is the concentration of atomic sites i.e. = where ρ is density, N A the Avogadro constant, and M the molar mass. It is the simplest point defect.