When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  3. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Generalized assignment problem; Integer programming. The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9

  5. Strong NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Strong_NP-completeness

    For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.

  6. Weak NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Weak_NP-completeness

    An example is the partition problem. Both weak NP-hardness and weak polynomial-time correspond to encoding the input agents in binary coding. If a problem is strongly NP-hard, then it does not even have a pseudo-polynomial time algorithm. It also does not have a fully-polynomial time approximation scheme. An example is the 3-partition problem.

  7. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    The minimum pattern count problem: to find a minimum-pattern-count solution amongst the minimum-waste solutions. This is a very hard problem, even when the waste is known. [10] [11] [12] There is a conjecture that any equality-constrained one-dimensional instance with n sizes has at least one minimum waste solution with no more than n + 1 ...

  8. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.

  9. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The probabilistic convolution tree-based dynamic programming method also efficiently solves the probabilistic generalization of the change-making problem, where uncertainty or fuzziness in the goal amount W makes it a discrete distribution rather than a fixed quantity, where the value of each coin is likewise permitted to be fuzzy (for instance ...