Search results
Results From The WOW.Com Content Network
In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the multivariate frequency distribution of the variables. They are heavily used in survey research, business intelligence, engineering, and scientific research.
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
Boschloo's test is a statistical hypothesis test for analysing 2x2 contingency tables. It examines the association of two Bernoulli distributed random variables and is a uniformly more powerful alternative to Fisher's exact test. It was proposed in 1970 by R. D. Boschloo. [1]
It should only contain pages that are Statistical tests for contingency tables or lists of Statistical tests for contingency tables, as well as subcategories containing those things (themselves set categories). Topics about Statistical tests for contingency tables in general should be placed in relevant topic categories.
Stata includes the function arima. for ARMA and ARIMA models. SuanShu is a Java library of numerical methods that implements univariate/multivariate ARMA, ARIMA, ARMAX, etc models, documented in "SuanShu, a Java numerical and statistical library". SAS has an econometric package, ETS, that estimates ARIMA models. See details.
A 2 x 2 contingency table is used at each interval of k comparing both groups on an individual item. The rows of the contingency table correspond to group membership (reference or focal) while the columns correspond to correct or incorrect responses. The following table presents the general form for a single item at the kth ability interval.
McNemar's test is a statistical test used on paired nominal data.It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal (that is, whether there is "marginal homogeneity").
The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics: