Search results
Results From The WOW.Com Content Network
Andrew Yan-Tak Ng (Chinese: 吳恩達; born 1976) is a British-American computer scientist and technology entrepreneur focusing on machine learning and artificial intelligence (AI). [2] Ng was a cofounder and head of Google Brain and was the former Chief Scientist at Baidu , building the company's Artificial Intelligence Group into a team of ...
Google Brain was a deep learning artificial intelligence research team that served as the sole AI branch of Google before being incorporated under the newer umbrella of Google AI, a research division at Google dedicated to artificial intelligence.
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
Amazon is adding artificial intelligence visionary Andrew Ng to its board of directors, a move that comes amid intense AI competition among startups and big technology companies. The Seattle ...
The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.
Transfer learning (TL) is a technique in machine learning (ML) in which knowledge learned from a task is re-used in order to boost performance on a related task. [1] For example, for image classification, knowledge gained while learning to recognize cars could be applied when trying to recognize trucks.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
It is named "chinchilla" because it is a further development over a previous model family named Gopher.Both model families were trained in order to investigate the scaling laws of large language models.