Search results
Results From The WOW.Com Content Network
Aldosterone release causes sodium and water retention, which causes increased blood volume, and a subsequent increase in blood pressure, which is sensed by the baroreceptors. [39] To maintain normal homeostasis these receptors also detect low blood pressure or low blood volume, causing aldosterone to be released.
Transcortin binds several steroid hormones at high rates: Cortisol - Approximately 90% of the cortisol in circulation is bound to transcortin. (The rest is bound to serum albumin.) Cortisol is thought to be biologically active only when it is not bound to transcortin. [citation needed] Cortisone [8] Deoxycorticosterone (DOC) [8]
[7] [8] Nuclear receptors that bind steroid hormones are all classified as type I receptors. Only type I receptors have a heat shock protein (HSP) associated with the inactive receptor that will be released when the receptor interacts with the ligand. Type I receptors may be found in homodimer or heterodimer forms. Type II nuclear receptors ...
The hormone receptor without ligand binding interacts with heat shock proteins and prevents the transcription of targeted genes. Aldosterone and cortisol (a glucosteroid) have similar affinity for the mineralocorticoid receptor; however, glucocorticoids circulate at roughly 100 times the level of mineralocorticoids. An enzyme exists in ...
The mineralocorticoid receptor (or MR, MLR, MCR), also known as the aldosterone receptor or nuclear receptor subfamily 3, group C, member 2, (NR3C2) is a protein that in humans is encoded by the NR3C2 gene that is located on chromosome 4q31.1-31.2. [5] MR is a receptor with equal affinity for mineralocorticoids and glucocorticoids.
Then the steroid binds to a specific steroid hormone receptor, also known as a nuclear receptor, which is a large metalloprotein. Upon steroid binding, many kinds of steroid receptors dimerize : two receptor subunits join together to form one functional DNA -binding unit that can enter the cell nucleus.
For example, aldosterone functions to raise blood sodium levels and lower blood potassium levels by targeting the kidneys. Specifically, it binds receptors of cells that comprise the distal tubules of the kidneys which then stimulate ion channels to conserve sodium and excrete potassium. [3] Additionally, the ion gradient initiates conservation ...
The outermost layer, the zona glomerulosa is the main site for the production of aldosterone, a mineralocorticoid. The synthesis and secretion of aldosterone are mainly regulated by the renin–angiotensin–aldosterone system. The zona glomerulosa cells express a specific enzyme aldosterone synthase (also known as CYP11B2).