When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field F q ( x ) {\displaystyle \mathbf {F} _{q}(x)} , since the Frobenius endomorphism sends x ↦ x p {\displaystyle x\mapsto x^{p}} and therefore is not surjective.

  3. Mason–Stothers theorem - Wikipedia

    en.wikipedia.org/wiki/Mason–Stothers_theorem

    Over fields of characteristic p > 0 it is not enough to assume that they are not all constant. For example, considered as polynomials over some field of characteristic p , the identity t p + 1 = ( t + 1) p gives an example where the maximum degree of the three polynomials ( a and b as the summands on the left hand side, and c as the right hand ...

  4. Linearised polynomial - Wikipedia

    en.wikipedia.org/wiki/Linearised_polynomial

    The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.

  5. Krivine–Stengle Positivstellensatz - Wikipedia

    en.wikipedia.org/wiki/Krivine–Stengle...

    In real algebraic geometry, Krivine–Stengle Positivstellensatz (German for "positive-locus-theorem") characterizes polynomials that are positive on a semialgebraic set, which is defined by systems of inequalities of polynomials with real coefficients, or more generally, coefficients from any real closed field.

  6. Algebraic function field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function_field

    The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.

  7. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  8. Hilbert's basis theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_basis_theorem

    Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [10] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable, and a system of equations [11]