When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The convolution/sum of probability distributions arises in probability theory and statistics as the operation in terms of probability distributions that corresponds to the addition of independent random variables and, by extension, to forming linear combinations of random variables.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Furthermore, under certain conditions, convolution is the most general translation invariant operation. Informally speaking, the following holds Suppose that S is a bounded linear operator acting on functions which commutes with translations: S(τ x f) = τ x (Sf) for all x.

  4. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  5. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  7. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...

  9. Convolution power - Wikipedia

    en.wikipedia.org/wiki/Convolution_power

    where ∗ denotes the convolution operation of functions on R d and δ 0 is the Dirac delta distribution. This definition makes sense if x is an integrable function (in L 1), a rapidly decreasing distribution (in particular, a compactly supported distribution) or is a finite Borel measure.