When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds.

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A bond angle is the geometric angle between two adjacent bonds. Some common shapes of simple molecules include: Linear: In a linear model, atoms are connected in a straight line. The bond angles are set at 180°. For example, carbon dioxide and nitric oxide have a linear molecular shape.

  4. Metal–metal bond - Wikipedia

    en.wikipedia.org/wiki/Metalmetal_bond

    Mn 2 (CO) 10 is a simple and clear case of a metal-metal bond because no other atoms tie the two Mn atoms together. When several metals are linked by metal-metal bonds, the compound or ion is called a metal cluster. Many metal clusters contain several unsupported M–M bonds. Some examples are M 3 (CO) 12 (M = Ru, Os) and Ir 4 (CO) 12.

  5. Pentagonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_bipyramidal...

    The pentagonal bipyramid is a case where bond angles surrounding an atom are not identical (see also trigonal bipyramidal molecular geometry). [1] [page needed] This is one of the three common shapes for heptacoordinate transition metal complexes, along with the capped octahedron and the capped trigonal prism. [2] [3] [page needed]

  6. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    An organic example is tetrahedrane (C 4 H 4) with four carbon atoms each bonded to one hydrogen and the other three carbons. In this case the theoretical C−C−C bond angle is just 60° (in practice the angle will be larger due to bent bonds), representing a large degree of strain. [citation needed]

  7. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Ligand - Wikipedia

    en.wikipedia.org/wiki/Ligand

    The bond order of the metal ligand bond can be in part distinguished through the metal ligand bond angle (M−X−R). This bond angle is often referred to as being linear or bent with further discussion concerning the degree to which the angle is bent. For example, an imido ligand in the ionic form has three lone pairs.