Ads
related to: quick ratio above 1 5 3 concrete mix strength
Search results
Results From The WOW.Com Content Network
Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases. Abrams’ law is a special case of a general rule formulated ...
A lower ratio leads to higher strength and durability, but may make the mix more difficult to work with and form. Workability can be resolved with the use of plasticizers or super-plasticizers. A higher ratio gives a too fluid concrete mix resulting in a too porous hardened concrete of poor quality.
The parts are in terms of weight – not volume. For example, 1-cubic-foot (0.028 m 3) of concrete would be made using 22 lb (10.0 kg) cement, 10 lb (4.5 kg) water, 41 lb (19 kg) dry sand, 70 lb (32 kg) dry stone (1/2" to 3/4" stone). This would make 1-cubic-foot (0.028 m 3) of concrete and would weigh about 143 lb (65 kg). The sand should be ...
Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...
Instead of using a 'nominal mix' of 1 part cement, 2 parts sand, and 4 parts aggregate, a civil engineer will custom-design a concrete mix to exactly meet the requirements of the site and conditions, setting material ratios and often designing an admixture package to fine-tune the properties or increase the performance envelope of the mix.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!