Search results
Results From The WOW.Com Content Network
Freezing point (°C) K f (°C⋅kg/mol) ... Ethylene glycol: 1.11 197.3 2.26 −12.9 ... Freezing-point depression; Boiling-point elevation;
5 Freezing point of aqueous solutions. ... Dielectric constant, ... Vapor–liquid equilibrium for ethylene glycol/methanol [3] P = 760 mmHg BP temp.
The phenomenon of freezing-point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. The freezing-point depression prevents radiators from freezing in winter. Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on.
Diethylene glycol behaves similarly. The freezing point depression of some mixtures can be explained as a colligative property of solutions but, in highly concentrated mixtures such as the example, deviations from ideal solution behavior are expected due to the influence of intermolecular forces. It's important to note that though pure and ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. [1]
Ethylene glycol 1.115 Diethylene glycol 1.118 Propylene carbonate 1.21 Formic acid 1.22 1,2-Dichloroethane 1.245 Glycerin 1.261 Carbon disulfide 1.263 1,2-Dichlorobenzene 1.306 Methylene chloride 1.325 Nitromethane 1.382 2,2,2-Trifluoroethanol 1.393 Chloroform 1.498 1,1,2-Trichlorotrifluoroethane 1.575 Carbon tetrachloride 1.594
The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles. Cryoscopy is related to ebullioscopy, which determines the same value from the ebullioscopic constant (of boiling point elevation).