When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).

  3. Sound speed gradient - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_gradient

    The sound wave front travels faster near the ground, so the sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [4] The opposite effect happens when the ground is covered with snow, or in the morning over water, when the sound speed gradient is positive.

  4. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.

  5. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  6. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    Unlike a regular distance-time graph, the distance is displayed on the horizontal axis and time on the vertical axis. Additionally, the time and space units of measurement are chosen in such a way that an object moving at the speed of light is depicted as following a 45° angle to the diagram's axes.

  7. Talk:Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Talk:Speed_of_sound

    Which means that sound travels FASTER in the thin rod by a factor of SQRT(1.2) =1.095. The ratio of rod/bulk speeds depends on Poisson's ratio: if it's larger than 0.33, a quite reasonable value, then it's easy to see that sound travels slower in thin rods than bulk, if it's less than 0.33, it goes faster in thin rods than bulk. Real values can ...

  8. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    If the wave is a sound wave and the sound source is moving faster than the speed of sound, the resulting shock wave creates a sonic boom. Lord Rayleigh predicted the following effect in his classic book on sound: if the observer were moving from the (stationary) source at twice the speed of sound, a musical piece previously emitted by that ...

  9. Ion acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Ion_acoustic_wave

    In plasma physics, an ion acoustic wave is one type of longitudinal oscillation of the ions and electrons in a plasma, much like acoustic waves traveling in neutral gas. . However, because the waves propagate through positively charged ions, ion acoustic waves can interact with their electromagnetic fields, as well as simple col