When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strain energy - Wikipedia

    en.wikipedia.org/wiki/Strain_energy

    The strain energy in the form of elastic deformation is mostly recoverable in the form of mechanical work. For example, the heat of combustion of cyclopropane (696 kJ/mol) is higher than that of propane (657 kJ/mol) for each additional CH 2 unit. Compounds with unusually large strain energy include tetrahedranes, propellanes, cubane-type ...

  3. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    The only method to calculate for arbitrary conditions is to calculate the total potential energy and differentiate it with respect to the crack surface area. This is typically done by: calculating the stress field resulting from the loading, calculating the strain energy in the material resulting from the stress field,

  4. Strain (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Strain_(chemistry)

    There are situations where seemingly identical conformations are not equal in strain energy. Syn-pentane strain is an example of this situation. There are two different ways to put both of the bonds the central in n-pentane into a gauche conformation, one of which is 3 kcal mol −1 higher in energy than the other. [1]

  5. Strain energy density function - Wikipedia

    en.wikipedia.org/wiki/Strain_energy_density_function

    A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation ...

  6. J-integral - Wikipedia

    en.wikipedia.org/wiki/J-integral

    The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.

  7. Castigliano's method - Wikipedia

    en.wikipedia.org/wiki/Castigliano's_method

    Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.

  8. Eating More Protein to Lose Weight? Avoid These 6 Common Mistakes

    www.aol.com/eating-more-protein-lose-weight...

    “Expert guidance suggests multiplying your body weight in pounds by anywhere from 0.55 to 0.72 to calculate the grams of protein you need daily,” Pasquariello said.

  9. Ogden hyperelastic model - Wikipedia

    en.wikipedia.org/wiki/Ogden_hyperelastic_model

    For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.