Search results
Results From The WOW.Com Content Network
In Viète's formula, the numbers of terms and digits are proportional to each other: the product of the first n terms in the limit gives an expression for π that is accurate to approximately 0.6n digits. [4] [15] This convergence rate compares very favorably with the Wallis product, a later infinite product formula for π.
The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies =, with the proviso that the infinite product diverges when infinitely many a n fall outside the domain of , whereas finitely many such a n can be ignored in the sum.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A telescoping product is a finite product (or the partial product of an infinite product) that can be canceled by the method of quotients to be eventually only a finite number of factors. [ 7 ] [ 8 ] It is the finite products in which consecutive terms cancel denominator with numerator, leaving only the initial and final terms.
It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().