Search results
Results From The WOW.Com Content Network
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
In Viète's formula, the numbers of terms and digits are proportional to each other: the product of the first n terms in the limit gives an expression for π that is accurate to approximately 0.6n digits. [4] [15] This convergence rate compares very favorably with the Wallis product, a later infinite product formula for π.
The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies =, with the proviso that the infinite product diverges when infinitely many a n fall outside the domain of , whereas finitely many such a n can be ignored in the sum.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are
A telescoping product is a finite product (or the partial product of an infinite product) that can be canceled by the method of quotients to be eventually only a finite number of factors. [ 7 ] [ 8 ] It is the finite products in which consecutive terms cancel denominator with numerator, leaving only the initial and final terms.