Search results
Results From The WOW.Com Content Network
Some authors use the term Cox proportional hazards model even when specifying the underlying hazard function, [14] to acknowledge the debt of the entire field to David Cox. The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this ...
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
For quantitative predictor variables, an alternative method is Cox proportional hazards regression analysis. Cox PH models work also with categorical predictor variables, which are encoded as {0,1} indicator or dummy variables. The log-rank test is a special case of a Cox PH analysis, and can be performed using Cox PH software.
OpenEpi is a free, web-based, open source, operating system-independent series of programs for use in epidemiology, biostatistics, public health, and medicine, providing a number of epidemiologic and statistical tools for summary data.
Extensions of the Cox proportional hazard models are popular models in social sciences and medical science to assess associations between variables and risk of recurrence, or to predict recurrent event outcomes. Many extensions of survival models based on the Cox proportional hazards approach have been proposed to handle recurrent event data.
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low.
R 2 L is given by Cohen: [1] =. This is the most analogous index to the squared multiple correlations in linear regression. [3] It represents the proportional reduction in the deviance wherein the deviance is treated as a measure of variation analogous but not identical to the variance in linear regression analysis. [3]