When.com Web Search

  1. Ad

    related to: 2d beam element stiffness matrix

Search results

  1. Results From The WOW.Com Content Network
  2. Stiffness matrix - Wikipedia

    en.wikipedia.org/wiki/Stiffness_matrix

    The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.

  3. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    This form reveals how to generalize the element stiffness to 3-D space trusses by simply extending the pattern that is evident in this formulation. After developing the element stiffness matrix in the global coordinate system, they must be merged into a single “master” or “global” stiffness matrix.

  4. Applied element method - Wikipedia

    en.wikipedia.org/wiki/Applied_element_method

    The stiffness matrix components corresponding to each degree of freedom are determined by assuming a unit displacement in the studied direction and by determining forces at the centroid of each element. The 2D element stiffness matrix size is 6 × 6; the components of the upper left quarter of the stiffness matrix are shown below:

  5. Finite element method in structural mechanics - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method_in...

    The origin of finite method can be traced to the matrix analysis of structures [1] [2] where the concept of a displacement or stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in 1950s.

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  7. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    the Galerkin method of weighted residuals, the most common method of calculating the global stiffness matrix in the finite element method, [3] [4] the boundary element method for solving integral equations, Krylov subspace methods. [5]

  8. Extended finite element method - Wikipedia

    en.wikipedia.org/wiki/Extended_finite_element_method

    The finite element method has been the tool of choice since civil engineer Ray W. Clough in 1940 derived the stiffness matrix of a 3-node triangular finite element (and coined the name). The precursors of FEM were elements built-up from bars (Hrennikoff, Argyris, Turner) and a conceptual variation approach suggested by R. Courant.

  9. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    Mathematically, this requires a stiffness matrix to have full rank. A statically indeterminate structure can only be analyzed by including further information like material properties and deflections. Numerically, this can be achieved by using matrix structural analyses, finite element method (FEM) or the moment distribution method (Hardy Cross) .