Search results
Results From The WOW.Com Content Network
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Factorial designs allow the effects of a factor to be estimated at several levels of the other factors, yielding conclusions that are valid over a range of experimental conditions. The main disadvantage of the full factorial design is its sample size requirement, which grows exponentially with the number of factors or inputs considered. [6]
The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!
The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]
Here is a sample program that computes the factorial of an integer number from 2 to 69 (ignoring the calculator's built-in factorial/gamma function). There are two versions of the example: one for algebraic mode and one for RPN mode. The RPN version is significantly shorter. Algebraic version:
Dropping B results in a full factorial 2 3 design for the factors A, C, and D. Performing the anova using factors A, C, and D, and the interaction terms A:C and A:D, gives the results shown in the table, which are very similar to the results for the full factorial experiment experiment, but have the advantage of requiring only a half-fraction 8 ...
Table of signs to calculate the effect estimates for a 3-level, 2-factor factorial design. Adapted from Berger et al., ch. 9. The full table of signs for a three-factor, two-level design is given to the right. Both the factors (columns) and the treatment combinations (rows) are written in Yates' order.
In a "full" factorial experiment, the number of treatment combinations or cells (see below) can be very large. [note 1] This necessitates limiting observations to a fraction (subset) of the treatment combinations. Aliasing is an automatic and unavoidable result of observing such a fraction. [3] [4]