Search results
Results From The WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The complement of the standard normal cumulative distribution function, () = (), is often called the Q-function, especially in engineering texts. [ 13 ] [ 14 ] It gives the probability that the value of a standard normal random variable X {\textstyle X} will exceed x {\textstyle x} : P ( X > x ) {\textstyle P(X>x)} .
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
For example, Tukey's range test and Duncan's new multiple range test (MRT), in which the sample x 1, ..., x n is a sample of means and q is the basic test-statistic, can be used as post-hoc analysis to test between which two groups means there is a significant difference (pairwise comparisons) after rejecting the null hypothesis that all groups ...
In statistics, a standard normal table, also called the unit normal table or Z table, [1] is a mathematical table for the values of Φ, the cumulative distribution function of the normal distribution.
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
The normal distribution is perhaps the most important case. Because the normal distribution is a location-scale family, its quantile function for arbitrary parameters can be derived from a simple transformation of the quantile function of the standard normal distribution, known as the probit function. Unfortunately, this function has no closed ...
[1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, () is the probability that a standard normal random variable takes a value larger than .