Search results
Results From The WOW.Com Content Network
For example, 5 is a lower bound for the set S = {5, 8, 42, 34, 13934} (as a subset of the integers or of the real numbers, etc.), and so is 4. On the other hand, 6 is not a lower bound for S since it is not smaller than every element in S. 13934 and other numbers x such that x ≥ 13934 would be an upper bound for S.
The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice
A real-valued function is bounded if and only if it is bounded from above and below. [1] [additional citation(s) needed] An important special case is a bounded sequence, where is taken to be the set of natural numbers. Thus a sequence = (,,, …) is bounded if there exists a real number such that | | for every natural number .
The generalized Pareto distribution has a support which is either bounded below only, or bounded both above and below; The metalog distribution, which provides flexibility for unbounded, bounded, and semi-bounded support, is highly shape-flexible, has simple closed forms, and can be fit to data using linear least squares.
In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers ... converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums ...
A real-valued or complex-valued function defined on some topological space is called a locally bounded functional if for any there exists a neighborhood of such that () is a bounded set. That is, for some number M > 0 {\displaystyle M>0} one has | f ( x ) | ≤ M for all x ∈ A . {\displaystyle |f(x)|\leq M\quad {\text{ for all }}x\in A.}
A real number x is called an upper bound for S if x ≥ s for all s ∈ S. A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real ...
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers. The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers