Search results
Results From The WOW.Com Content Network
The empty set is the set containing no elements. In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced.
Null sets play a key role in the definition of the Lebesgue integral: if functions and are equal except on a null set, then is integrable if and only if is, and their integrals are equal. This motivates the formal definition of L p {\displaystyle L^{p}} spaces as sets of equivalence classes of functions which differ only on null sets.
Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. However, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the axiom schema of separation. This is true, since the empty set is a ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.
The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Any differentiable function has the Luzin N property. [1] [2] This extends to functions that are differentiable on a cocountable set, as the image of a countable set is countable and thus a null set, but not to functions differentiable on a conull set: The Cantor function does not have the Luzin N property, as the Lebesgue measure of the Cantor set is zero, but its image is the complete [0,1 ...