Search results
Results From The WOW.Com Content Network
The cathode can be negative like when the cell is electrolytic (where electrical energy provided to the cell is being used for decomposing chemical compounds); or positive as when the cell is galvanic (where chemical reactions are used for generating electrical energy). The cathode supplies electrons to the positively charged cations which flow ...
Each incident electron produces multiple secondary electrons, so the cascaded dynode chain amplifies the initial electrons. In particle physics , secondary emission is a phenomenon where primary incident particles of sufficient energy , when hitting a surface or passing through some material, induce the emission of secondary particles.
Electrons that originate deeper in the solid are much more likely to suffer collisions and emerge with altered energy and momentum. Their mean-free path is a universal curve dependent on electron's energy. Electron escape through the surface barrier into free-electron-like states of the vacuum. In this step the electron loses energy in the ...
A cathode electrode in a vacuum tube or other vacuum system is a metal surface which emits electrons into the evacuated space of the tube. Since the negatively charged electrons are attracted to the positive nuclei of the metal atoms, they normally stay inside the metal and require energy to leave it. [1]
where Ψ(x) is the electron wave-function, expressed as a function of distance x measured from the emitter's electrical surface, [62] ħ is the reduced Planck constant, m is the electron mass, U(x) is the electron potential energy, E n is the total electron energy associated with motion in the x-direction, and M(x) = [U(x) − E n] is called ...
An electron in the phosphor absorbs a high-energy photon from the applied radiation, exciting it to a higher energy level. After losing some energy in non-radiative transitions, it eventually transitions back to its ground state energy level by fluorescence, emitting a photon of lower energy in the visible light region.
An equivalent definition of MTE is the temperature of electrons emitted in vacuum. [6] The MTE of electrons emitted from commonly used photocathodes, such as polycrystalline metals, is limited by the excess energy (the difference between the energy of the incident photons and the photocathode's work function) provided to the electrons.
A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode-ray tube. Cathodoluminescence is the inverse of the photoelectric effect , in which electron emission is induced by irradiation with photons.