When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The constant of proportionality, G, in this non-relativistic formulation is the gravitational constant. Colloquially, the gravitational constant is also called "Big G", distinct from "small g" (g), which is the local gravitational field of Earth (also referred to as free-fall acceleration).

  3. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    A small mass has an extremely small Schwarzschild radius. A black hole of mass similar to that of Mount Everest [19] [note 2] would have a Schwarzschild radius much smaller than a nanometre. [note 3] Its average density at that size would be so high that no known mechanism could form such extremely compact objects.

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  5. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    If is the dimensional frequency, then is the corresponding free ... Various, e.g. or : Various sports: Other fields. Name Standard symbol Definition ...

  6. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    Most modern approaches to mathematical general relativity begin with the concept of a manifold.More precisely, the basic physical construct representing gravitation — a curved spacetime — is modelled by a four-dimensional, smooth, connected, Lorentzian manifold.

  7. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    Normalizes the characteristic impedance Z g of gravitational radiation in free space to 1 (normally expressed as ⁠ 4 π G / c ⁠). [note 2] Eliminates 4 π G from the Bekenstein–Hawking formula (for the entropy of a black hole in terms of its mass m BH and the area of its event horizon A BH) which is simplified to S BH = π A BH = (m BH) 2.

  8. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  9. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.